
Smart Contract Code
Review And Security
Analysis Report

Customer: GamesCoin

Date: 14 Dec, 2023

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

We thank GamesCoin for allowing us to conduct a Smart Contract Security

Assessment. This document outlines our methodology, limitations, and results

of the security assessment.

GamesCoin is an EVM-compatible fungible token with a fixed supply of

3,000,000,000. Minting is allowed on a monthly basis in the span of 60 months

��5 years).

Platform: EVM

Language: Solidity

Tags: ERC�20, BEP�20

Timeline: 03.12.2023 - 14.12.2023

Methodology: Link

Last review scope

Repository https://github.com/Youre-Group/sc-gamescoin

Commit e3d0597

View full scope

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/11gnFUOlhvSoE075rlaU5pMfXFX2wi5vnOkZL-rUhfQw
https://github.com/Youre-Group/sc-gamescoin
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Audit Summary

10/10
Security score

10/10
Code quality score

100%
Test coverage

10/10
Documentation quality

score

The system users should acknowledge all the risks summed up in the risks

section of the report.

1
Total Findings

1
Resolved

0
Acknowledged

0
Mitigated

Findings by severity Findings Number Resolved Mitigated Acknowledged

Critical 0 0 0 0

High 0 0 0 0

Medium 0 0 0 0

Low 1 1 0 0

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

This report may contain confidential information about IT systems and the

intellectual property of the Customer, as well as information about potential

vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any

subsequent publication of this report shall be without mandatory consent.

Document

Name
Smart Contract Code Review and Security Analysis Report for
GamesCoin

Audited By Vladyslav Khomenko | SC Auditor at Hacken OÜ

Website http://gamescoin.io/

Changelog 30.11.2023 – Preliminary Report

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

http://gamescoin.io/
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Last review scope... 2
Introduction... 6
System Overview..6
Executive Summary.. 7
Risks...8
Findings... 9

Critical..9
High..9
Medium..9
Low... 10

L01. Method, required in specification is missed.. 10
Informational.. 11

I01. Floating pragma.. 11
I02. Custom Errors in Solidity for Gas Efficiency...12
I03. Ownership Irrevocability Vulnerability...13
I04. Immutable variables should be declared as such................................. 13
I05. Computation is overcomplicated... 14

Disclaimers.. 16
Appendix 1. Severity Definitions.. 17

Risk Levels... 18
Impact Levels.. 18
Likelihood Levels.. 19
Informational..19

Appendix 2. Scope... 20

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Introduction
Hacken OÜ �Consultant) was contracted by GamesCoin �Customer) to conduct

a Smart Contract Code Review and Security Analysis. This report presents the

findings of the security assessment of the Customer's smart contracts.

System Overview

GamesCoin is a simple ERC�20 (and BEP�20� compatible fungible token in the

GamesCoin.sol contract. The ownership of the contract is transferable.

It has the following attributes:

● Name: GamesCoin

● Symbol: GC

● Decimals: 5

● Total supply: 3 billion tokens.

● Minting: 50 million is unlocked for minting every 30 days.

Privileged roles

The owner of the contract is able to:

● mint tokens that are unlocked for minting

● transfer ownership

● renounce ownership

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Executive Summary

The score measurement details can be found in the corresponding section of

the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.

● Technical description is provided in full.

● NatSpec is provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Code coverage of the project is 100% (branch coverage).

Security score

As a result of the audit, the code contains no severity issue. The security score

is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the following

score: 10. The system users should acknowledge all the risks summed up in the

risks section of the report.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risks
● The minting start date is hard-coded to be Nov 16, 2023.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low

L01. Method, required in specification is missed

Impact Low

Likelihood Medium

GamesCoin claims to be a BEP�20 token. BEP�20 specification describes this

standard and its required methods. All of them are present in the GamesCoin

contract except one - the getOwner function.

According to the note in the standard:

● [getOwner] Returns the bep20 token owner, which is necessary for

binding with bep2 token.

● NOTE - This is an extended method of EIP20. Tokens which do not

implement this method will never flow across the BNB Beacon Chain

and BNB Smart Chain.

Path: ./src/GamesCoin.sol

Recommendation: To mitigate these risks, it is recommended to add this

method to the contract.

Found in: e3d0597

Status: Fixed �Revised commit: 2586586�

Remediation: Method getOwner was added.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/bnb-chain/BEPs/blob/master/BEPs/BEP20.md
https://github.com/bnb-chain/BEPs/blob/master/BEPs/BEP20.md#5116-getowner
https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Informational

I01. Floating pragma

A floating pragma in Solidity refers to the practice of using a pragma statement

that does not specify a fixed compiler version but instead allows the contract to

be compiled with any compatible compiler version. This issue arises when

pragma statements like pragma solidity ^0.8.0 are used without a specific

version number, allowing the contract to be compiled with the latest available

compiler version. This can lead to various compatibility and stability issues.

Version Compatibility: Using a floating pragma makes the contract susceptible

to potential breaking changes or unexpected behavior introduced in newer

compiler versions. Contracts that rely on specific compiler features or behaviors

may break when compiled with a different version.

Interoperability Issues: Contracts compiled with different compiler versions may

have compatibility issues when interacting with each other or with external

services. This can hinder the interoperability of the contract within the Ethereum

ecosystem.

The project uses floating pragma ^0.8.20.

Path: ./src/GamesCoin.sol

Recommendation: To mitigate these risks, it is recommended to use a fixed

pragma statement that specifies a known, well-tested compiler version. This

helps ensure the stability, security, and predictability of the smart contract

throughout its lifecycle.

Found in: e3d0597

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Status: Fixed �Revised commit: 2586586�

Remediation: Compiler version is now fixed: 0.8.20.

I02. Custom Errors in Solidity for Gas Efficiency

Starting from Solidity version 0.8.4, the language introduced a feature known as

"custom errors". These custom errors provide a way for developers to define

more descriptive and semantically meaningful error conditions without relying on

string messages. Prior to this version, developers often used the require

statement with string error messages to handle specific conditions or

validations. However, every unique string used as a revert reason consumes gas,

making transactions more expensive.

Custom errors, on the other hand, are identified by their name and the types of

their parameters only, and they do not have the overhead of string storage. This

means that, when using custom errors instead of require statements with string

messages, the gas consumption can be significantly reduced, leading to more

gas-efficient contracts.

Path: ./src/GamesCoin.sol

Recommendation: It is recommended to use custom errors instead of revert

strings to reduce Gas costs, especially during contract deployment. Custom

errors can be defined using the error keyword and can include dynamic

information.

Found in: e3d0597

Status: Fixed �Revised commit: 2586586�

Remediation: Custom errors are implemented.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

I03. Ownership Irrevocability Vulnerability

The smart contract under inspection inherits from the Ownable library, which

provides basic authorization control functions, simplifying the implementation of

user permissions. The contract in question allows the owner to mint tokens.

However, the contract retains the default renounceOwnership function from

Ownable.

Given this, once the owner renounces ownership using the renounceOwnership

function, the contract becomes ownerless.

This state halts the contract's minting ability.

Path: ./src/GamesCoin.sol

Recommendation: Override the renounceOwnership function to revert

transactions: By overriding this function to simply revert any transaction, it will

become impossible for the contract owner to unintentionally (or intentionally)

render the contract ownerless.

Found in: e3d0597

Status: Fixed �Revised commit: 2586586�

Remediation: Ownership is now secured.

I04. Immutable variables should be declared as such

The variable MINT_START is set in the constructor and is never changed after

that. This means this variable is read-only, yet it is not declared as one.

State variables can be marked immutable, which causes them to be read-only,

but assignable in the constructor. The value will be stored directly in the code.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Reading immutables is significantly cheaper than reading from regular state

variables since they will not be stored in storage, but their values will be directly

inserted into the runtime code.

Path: ./src/GamesCoin.sol

Recommendation: Consider declaring read-only variable MINT_START as

immutable.

Status: Fixed �Revised commit: 2586586�

Remediation: MINT_START is now immutable.

I05. Computation is overcomplicated

When token minting is triggered, the contract performs sanity checks and then

calculates the amount of tokens that are available for minting. The

calculateMintableAmount function is responsible for this calculation and it looks

like this:

function calculateMintableAmount() internal view returns (uint256) {

// Calculate the number of days since mints started

uint256 monthsPassed = (block.timestamp - MINT_START) /

MINT_ALLOWANCE_INCREASE_PERIOD;

uint256 monthsOver = (block.timestamp - MINT_START) %

MINT_ALLOWANCE_INCREASE_PERIOD;

uint256 mintableMonthsPassed = monthsPassed;

if (monthsOver > 0) {

mintableMonthsPassed += 1;

}

uint256 mintedAmount = totalSupply();

// Mintable amount

uint256 mintableAmount = mintableMonthsPassed * MONTHLY_MINT_CAP -

mintedAmount;

// Cap mintable amount

if (mintableAmount > MAX_SUPPLY - mintedAmount) {

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

mintableAmount = MAX_SUPPLY - mintedAmount;

}

return mintableAmount;

}

This function performs quite simple computation and it can be simplified for

both better readability and slightly improved gas consumption.

Path: ./src/GamesCoin.sol

Recommendation: Consider removing the extra check for the end of the month

(meaning that every 30 day mark will be considered first second of next month,

rather than 30 days + 1 second) and simplifying the function in general:

function calculateMintableAmount() internal view returns (uint256) {

uint256 monthsPassed = (block.timestamp - MINT_START) /

MINT_ALLOWANCE_INCREASE_PERIOD + 1; // suggest to always count in current month

uint256 mintProjection = monthsPassed * MONTHLY_MINT_CAP;

uint256 newTotalMinted = mintProjection < MAX_SUPPLY ? mintProjection :

MAX_SUPPLY;

return newTotalMinted - totalMinted;

}

Found in: e3d0597

Status: Fixed �Revised commit: 2586586�

Remediation: Improvement recommendation was implemented.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry

practices at the time of the writing of this report, with cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all

vulnerabilities and security of the code. The report covers the code submitted

and reviewed, so it may not be relevant after any modifications. Do not consider

this report as a final and sufficient assessment regarding the utility and safety of

the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this

report, it is important to note that you should not rely on this report only — we

recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible

for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 1. Severity Definitions
When auditing smart contracts Hacken is using a risk-based approach that

considers the potential impact of any vulnerabilities and the likelihood of them

being exploited. The matrix of impact and likelihood is a commonly used tool in

risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could result if it

were to be exploited. For smart contracts, this could include the loss of funds or

assets, unauthorized access or control, or reputational damage.

The likelihood of a vulnerability being exploited is determined by considering the

likelihood of an attack occurring, the level of skill or resources required to exploit

the vulnerability, and the presence of any mitigating controls that could reduce

the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit and can lead

to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring specific

conditions, or have a more limited scope, but can still lead to the loss of user

funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations and, in

most cases, cannot lead to asset loss. Contradictions and requirements

violations. Major deviations from best practices are also in this category.

Low: Major deviations from best practices or major Gas inefficiency. These

issues will not have a significant impact on code execution, do not affect

security score but can affect code quality score.

Impact Levels

High Impact: Risks that have a high impact are associated with financial losses,

reputational damage, or major alterations to contract state. High impact issues

typically involve invalid calculations, denial of service, token supply

manipulation, and data consistency, but are not limited to those categories.

Medium Impact: Risks that have a medium impact could result in financial

losses, reputational damage, or minor contract state manipulation. These risks

can also be associated with undocumented behavior or violations of

requirements.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Low Impact: Risks that have a low impact cannot lead to financial losses or state

manipulation. These risks are typically related to unscalable functionality,

contradictions, inconsistent data, or major violations of best practices.

Likelihood Levels
High Likelihood: Risks that have a high likelihood are those that are expected to

occur frequently or are very likely to occur. These risks could be the result of

known vulnerabilities or weaknesses in the contract, or could be the result of

external factors such as attacks or exploits targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are

possible but not as likely to occur as those in the high likelihood category. These

risks could be the result of less severe vulnerabilities or weaknesses in the

contract, or could be the result of less targeted attacks or exploits.

Low Likelihood: Risks that have a low likelihood are those that are unlikely to

occur, but still possible. These risks could be the result of very specific or

complex vulnerabilities or weaknesses in the contract, or could be the result of

highly targeted attacks or exploits.

Informational
Informational issues are mostly connected to violations of best practices, typos

in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will be

beneficial for the project.

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://hacken.io/

Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Appendix 2. Scope
The scope of the project includes the following smart contracts from the

provided repository:

Scope details

Repository https://github.com/Youre-Group/sc-gamescoin

Commit 2586586bc029a84cb8a5d2c27602ef4e1d78e606

Whitepaper

Requirements

Technical
Requirements Link

Contracts in Scope

./src/GamesCoin.sol

This document is proprietary and confidential. No part of this document may be disclosed in any
manner to A third party without the prior written consent of Hacken.

https://hacken.io/

https://github.com/Youre-Group/sc-gamescoin
https://github.com/Youre-Group/sc-gamescoin/blob/2586586bc029a84cb8a5d2c27602ef4e1d78e606/README.md
https://hacken.io/

